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IN~FORMATIVE GEOMETRY OF PROBABILITY SPACES

Jacob Burbea

•ASTRACT

The paper is concerned with the geometrical properties that are

induced by the local information contents and structures of the para-

meter space of probability distributions. Of particular interest in

this investigation is the Rao distance which is the geodesic distance

induced by the differential metric associated with the Fisher informa-

tion matrix of the parameter space. Moreover, following Efron, Dawid and

Amari, some affine connections are introduced into the informative

geometry of parameter space and thereby elucidating the role of the

curvature in statistical studies. In addition, closed form expressions

of the Rao distances for certain families of probability distributions

are given and discussed. -
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Informative Geomet r4

of Probability Spaces

by Jacob Burbea

Metrics and distances (or semi-distances) between pro-

bability distributions play an important role in problems

of statistical inference and in pratical applications to

study affinities among a given set of populations. A stat-

istical model is specified by a family of probability dis-

tributions, usually described by a set of continuous para-

meters known as parameter space. The latter possesses some

geometrical properties which are induced by the local infor-

mation contents and structures of the distributions. Start-

* ing from Fisher's pioneering work [17] in 1925, the study

of these geometrical properties has received much attention

in the statistical literature. In 1945, Rao [24] introduced

a Riemannian metric in terms of the Fisher information

matrix over the parameter space of a paremetric family of

probability distributions, and proposed the geodesic dis-

tance induced by the metric as a measure~ of dissimilarity

between two probability distributions. Since then, many

statisticians have attempted to construct a geometrical

theory in probability spaces and it was only after thirty

years later that Efron [3.3] was able to introduce a new

af fine connection into the geometry of parameter spaces and

thereby elucidating the important role of the curvature

-- -- --- --- ---
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in statistical studies. Significant contributions to

Efron's work were made by Reeds [28] and Dawid [11]. The

latter has even suggested a geometrical foundation for

Efron's approach as well as pointing out the possibility of

*introducing other affine connections into the geometry of

' parameter spaces (see also Amari [1,2]). This recent study

has also revived the interest in dissimilai-ity measures like

the Rao distance [25], especially in the closed form expres-

sions of these distances for certain families of probability

distributions. Some work in these directions was done

earlier by 6enuov [9, 10]. Recently, Atkinson and Mitchell

[3], independently of Cencov [9,10], computed the Rao dis-

tances for a number of parametric families of probability

.- distributions. A unified approach to the construction of

distance and dissimilarity measures in probability spaces

is given in recent papers by Burbea and Rao [7,8], and Oller

and Cuadras [221 (see also [6]).

1. Generalities.

We first introduce some notation. Let U be a a-finite . -

S.- additive measure, defined on a a-algebra of the subsets of a

measurable space X. Then, M-$i(X:p) stands for the space of

all u-measurable functions on X, L-L(X:u) designates the

space of all pcM so that

. . . . * * . . . * . . . . . . .. . . . . - . . . . . . . . . . .

- r _ . ._ '. -- - • ". - .-- -.-- • - - " . .. ' .. - 2. . > - "- "- -. -- o -- " -- - .- .- .-. - . . - . . - . . .



3

I I llu fxlp(x)lIdp (x)--fx Ipl dpJ<-. %.'

By M4+BM+(x:p) we denote the set of all peM such that

p(x)R+-(O,o) for u-almost all x&x, and we define L+=L+(x:p)

as L +'i i. We let PP(x:p) stand for the set of all

pCd+ with 1p I,=l. Evidently, P is a convex subset of L+11

and pci+ if and only if puli i P.

In the probability context, a random variable X takes

values in the sample space X according to a probability dis-

tribution p assumed to belong to P. If X is a continuous

random variable, p will be the Lebesgue measure on the Borel

sets of a euclidean sample space X and, if X is discrete,

is taken as a counting measure on the sets of a countable

sample space X.

Let 8=(O,...,On) be a set of real continuous parameters

belonging to a parameter space 0, a manifold embedded in Rn

and let Fo={p(-I)eL+:OO} be a parametric family of posi-

tive distributions p=p(. 1), 6eO, with some regularity pro-

perties not mentioned explicitly to avoid lengthy discussion

(see, however [3,7,121). For example, it is implicitly as-

sumed that

Paip~aiP(.1o)-p(.1o)/O i  (p=p(.Io)cF0 , i=l,...,n)

is in 1 for every OeO. It is also assumed that for a fixed

OO, the n functions {iP}i=l are linearly independent over

*- .
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x. We also consider a parametric family of probability

distributions P 0=[p(. I8)eP:6O1 which may be viewed as a

covxsubfamily of Fe

* . Let f be a continuous and positive function on Rand -

define

where in the integrand, the dependence on xFX and Oee is

supressed and where

n
dp=dp(.IO)= (a p)dO

Here and throughout the remaining parts of this entry we

shall use freely the convention of supressing the dependence

on xcX and Gee. Thus, with this convention,

(1.1) 2s() Md g ~do.d

with

M= (f)

It follows that the nxn matrix [g1M.(0)] is positive-de-

finite for every Oee and hence dsf ie a Riemannian metric

-. on 0. Alternative expressions for these quantities are

available through the language of expectations. Thus, for

p= p(.16) e c

ds (0)=Ee [(fop) (dlogp) I

f H
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and

g9f) (0)=E [(fop)b logp) logp)]

In the theory of information (see [6]) the quantitv-

logp(.I), for p(.I0)OP0 , is known there as the amount of

"self-information" associated with the state OeO. The self-

information for the nearby state 0+6 O is then

-logp(-1+60). To the first order, the difference between

the self-informations associated with these states is given

by

dlogp= (3ilogp)dO.

and hence ds2(0) measures the weighted average of the square

of this first order difference with the weight f[p(.10)].
A2(f)--."

For this reason, the metric ds2 and the matrix [g.. I are
IJ

called the "f-information metric" and the "f-information

matrix", respectively.

As is well-known from differential geometry, gi-.

i j

(i,j=l,.... n) is a convariant symmetric tensor of the second

2order for all 60, and hence ds is invariant under the
f

admissible transformations of the paremeters. Let 6=0(t),

t1<t<t2, be a curve in 0 joining the points 0(l), (2)0 "

with o(J)=8(t.)(j=l,2). Since dsf-(ds ) I/2 is the line

element of the metric dsf, the distance between these points

9-o°
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along this curve is

ft 2 s ftl M1/
f~ dtl=11 2  g gE(0)6 8 1l/dtI

t~~~. dtt I i o

1 1 i,j-l i

where a dot denotes differentiation with respect to the

curve-parameter t. The geodesic curve, namely the curve

joining 6()ad0()such that the above distance is the

shortest is called the "f-information geodesic curve" along

6 (l) and 8 (2) while the resulting distance S( (1() 1- (2) ) is

called the 'If-information geodesic distance" between e6l

and 6 he(2). Th -information geodesic curve 6=6(t) may be

determined from the Euler-Lagrange equations

n n
(1.2) 9 e- (k=k,...,n)

Iik ijl ijk i j=

and from the boundary conditions

(t (i=l,...,n ;j=1,2).

0 Here, the quantity rf) is given by -

ijk

(1.3) rij=aijk 3 ij ki akgij

S and is known as the "Christoffel symbol of the first kind"

for the metric ds2
f"

By the very definition of the f-information geodesic

S curve 0=0(t), its tangent vector 6=6(t) is of constant2

2
length with respect to the metric ds Thus,

Sf
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(1.4) {sf ((t) g2 = Y'L 1  jconst.
i,j=i

The constant may be chosen to be of value 1 when the curve-

parameter t is chosen to be the arc-length parameter s,

O<s<s 0 with so-Sf( $(1 ,8( 2 ), 6()-(1- and e(so)=( 2 ). It

is also clear that the f-information geodesic distance S

on the parameter space 0 is invariant under the admissible

transformations of the parameters as well as of the random

variables.

2The metric ds (6) may also be regarded as a functional
of p(.Ie)eF. This functional is convex in p("Io)WF if

and only if the function F(x)-x/f(x) is concave on R+. In

2
particular, if f is also a C -function on R then this
holds if and only if FF">2(F')2 on IR.. The choice of f(x)=

x gives the "c-order information metric"

2 ct-l 2
(1.5) ds (0)=E0 [p (dlogp) 2

with the corresponding "a-order information matrix"

(1.6) gi) (O)=E [Pc-l (ailogp)(3 logp)] -

and the "c-order information geodesic distance" S on 0. It
a

follows that ds2 (e) is convex in p(.10)eF0 if and only if

1< <2. We drop the suffix a when c=l. Then, ds2 is known

as the "information metric" or the "Fisher amount of infor-

mation" while [gi.] is the well-known "information matrix"
ii

.•0-.<
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or the "Fisher information matrix". The distance S on 0 is

called the "information geodesic distance" or the "Rao dis-

tance" (see [3,7,26]). We also note that

S(0)=f aa df a logpdp.

Moreover, for cO,

(a) 2 fa l
ij~ i

In particular,

= ( a.f Pd PiPa a logpdp"gij (O) p- Io--- .

and thus

2

The metric dsf(0) arises as the second order differen-

tial of certain entropy or divergence functionals along the

direction of the tangent space of 0 at eeO. See [7,12] for

more details (see also [6]).

2
For example, let F(,) be a C -function onR+X JR+ and

consider the "F-divergence"

i' -[' ~ ~ (p,q)=Sx F[p(x) ,q(x)] dp (x) (p,qcM+." -

.. 1

We shall also assume that F satisfies the following addi-

tional properties: (i) F(x,.) is strictly convex on R+ for

every xcR+; (ii) F(x,x)=O for every xe.

.,+ . . . .+......
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(iii) a F(x,y)l =const. for every xeR+. For p(. ) .
y y=x +

and p(. 10(2)) in P we write

Fe(1) ,(2)=D[ • 1(1)) ,p.(2)) ( ( 1 ) ,(2)ee....

Then, for p(. 8)eF0 and 6EO,

D (e,e)=O , dF(8,6)=f a F(p,y)l (dp)dl=0

F Y=P

and

2 2
d2F (O,8)dsf(0)

where

f(x)=xa F(x,y)l (xei+).
y y=x+

It follows that to the second order infinitesimal displace-

ments

%-" D~~F(e,e+ 6 e)= 12~) i}:i
1 2

D (6066)= dsf(O).
0F

2. Properties of the Information Metric.

We shall describe some further properties of the f-in-

formation metric dsf. However, for reasons of clarity and

economy we shall restrict ourselves here to the case of the

2
ordinary information metric ds (i.e. when f(x)-l or when

a=l in (1.5)) on the parametric space 0 of probability dis-

tributions p(.1) in P A more general discussion may be

found in [7,8]. We shall hereafter also assume that the sum-

.,.•""-.
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mation is taken without~ the symbol E when the indices are

reapeated twice and that the extent of the summation is un--

derstood as running from 1 to n. Thus, with this conven-

ai, we have, by virtue of (1.1), (1.3), (1.6) and (1.7),

ds =g. dO dO.

i J

ij "" i

and

(2.1) r 1 +g -g 1
ijk 2 i 4k j ki k ij

The information geodesic curves 6=0(s), where s is the

arc-length parameter, are determined, in view of (1.2), by

(2.2) f9*ae we :f (r0 (k=l,...,n).
ij i ijk ij d

dhave

(2.3) j [g g - ]

Thus, for two points a,beO, or for P. (Ia), whe b)es , the

Rao distance S(a,b) is completely determined by (2.2), a

system of n second order (non-linear) differenital equations,

and by the 2n boundary conditions 0(0)=a and 6(s 0)=b with

so=S(a,b). This computation may be facilitated with the

aid of the normalization (2.3).

We denote by Tthe Fisher information matrix [g..], by
i-

(23Si -.

. . ° *
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g' the elements of its inverse j- , and, as usual, the

elements of the unit matrix I are denoted by the delta of

Kronecker 6i- Note that 'll[gij] is also positive-de-
-ii.

finite and that I is associated with a distribution

p(" je)cP' of a random variable X. We list the following

properties (see Rao [27, p. 323-332] for more details):

I? Let II and I2 be the information matrices due to two

11 2independent random variables X 1 and X 2 . Then 1=1 i+ 2

is the information matrix due to X=(XIX 2) jointly.

2? Let I be the information matrix due to a function T of
T

X. Then 7-1~ is semi positive-definite.

3? Let p(-1)EP0 with the corresponding information matrix

1. Assume that f=(fl,...,fm) is a vector of m statis-

tics (random variables) and define g(e)=

(gl(e),...,gm(O)) by gi(O)=Ee(fi) (i=l,...,m), i.e. f

is an unbiased estimator of .&(). Consider the mxm and

mxn matrices V=[Vi ] and U=[V ] given by V.
11 4 J

E [Cf -g.)(f.-g.)] (i,j=l,...,m) and U. =Ee [f ia logp]
0 i-gi j- iij j 6- 1

(i=l,...,m; j=l,...,n). Then:

i) The mxm matrix V-UI-IU is semi positive-definite for

every OcO. The matrix is zero at some OeO if and only

if f=(fl,...,f is of the form fi=Xik logp+E(f )

(i=l,. .. ,M

(ii) Suppose, in addition, that DjfXfi(x)p(xle)du(x)=

fxfixa)p~xledux (i=l,...,m; j=l,...,n). Then U
0o

• ° o- . - ,*" • °• .w° *. *.*. * *** " • . **° o* . . -° Q * o - * -. •° o •• .* . -.*** °. .* .o . • • . . ° °°%.. ° *- . .• . o•. .
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is the Jacobian-matrix [3 gi] of g=(gl"''.g ) with

respect to 8=(O1,...,8n). In particular, when m-n and

g(e)=e, i.e. f is an unbiased estimator of e, then

V-f-1 is semi positive-definite.

The last property constitutes the celebrated "Cramer-

Rao lower bound theorem", namely that for any unbiased esti-

mator of 0, its covariance matrix dominates the inverse of

0 the Fisher information matrix.

3. Information Connections and Curvatures.

The information metric renders the parameter space 0 as

a Riemannian manifold with the metric tensor gij associated

with the distribution p(-Ie)eP0. In this context, the

Christoffel symbol of the first kind rijk in (2.1) is called

the "first information connection". As is well known from

differential geometry, this natural affine connection in-

duces a parallelism on 0, known as the "Levi-Civita paral-

lelism", which is compatible with the metric tensor gi1 ' in

the sense that the covariant differentiation of the latter

vanishes for this connection. Using the summation conven-

tion, one introduces the "Christoffel symbol of the second

kind" rik by

k mk(3.1) ri=i~g r .

This is also called the "second information connection".

*. . . . . . **. -. .*.* *. .. . . * * -. *. .. *

". ,, , ,, • . """ " ' " " ""J . . ,, .. , , " " " - -•• " '., - ... ,-.- ," . ."-. ... . . . ..'... .-. ".,.. . . . . . . . . . .'..,.."-..•.•............-. .;*. • , ,."* *
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With the aid of this connection, the equation for the infor-

mation geodesic curves (2.2) assumes the alternative form

(3.2) 8k+rk 6i0 =0 (k'l,...,n).
k'i i i

In differential geometry one also considers the

"Riemann-Christoffel tensor of the second kind"

(3.3) R m=ar -a r I+r m r I
ijk ik kij ikmj ij mk -

and the "Riemann-Christoffel tensor of the first kind"

(3.4) Ri - -- '-"
Rij klR kzgmi .  -. ':-i--

These quantities are also vnown as the "second information

curvature tensor" and the "first information curvature ten-

sor- , respectively. In this r2spect, it is worthwhile

noticing that -

Rijk9=-Rjik=-Rij kk 9.ij,

R ijk,+Riklj +R =0

and that the number of distinct nonvanishing components of

2 2the tensor R is n (n -1)/12. The latter reduces to 0
ij k9

when n=l and to 1 when n=2.

The "mean Gaussian curvature", in the directions of x=

(xl,...,x n ) and Y=(y'... ,yn) of Rn is given by
n l

-A.. . .1.-.....%1 .1=°
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(3.5) K-K(6:x,y)- ( kjiY (CO),(gikgj C-gi~gjk ) x iy j x  "'"

and is also called the "information-curvature" in the direc-

tions of x and y. This curvature is identically zero if 0

is euclidean and is constant if the space 0 is isotropic

(i.e. when K is independent of the directions x and y), pro-

vided n>2.

Besides the first information connection r jk there are,

of course, other connections leading to parallelisms which

differ from the Levi-Civita parallelism. However, in the

context of statistical inference, the choice of such connec-

tions should reflect the structure of the distributions in

some meaningful manner. Following an idea of Dawid [11],

Amari [1] considers the one parameter family of affine con-

a
nections rijk given by

a a
r Er - -T (aER)
ijk= ijk 2 ijk

where T ijk is the symmetric tensor

Ti kEe [D (logp) (3 logp)3 ( logp) ]. 2::

a
The connection P is called the "a-connection". Thus, in

.k

this context, the first information connection is the O-con-

nection. An alternative exoression for the a-connection is

a 1-ari =E6[(aia logp) (ak l og p ) ]I + 17-aTik"'":"

ij . . . . . . . . . . . . ..
..... ...... ...... . . . . . .
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The 1-connection was introduced first by Efron [13] and

hence is also called the "Efron-connection". The -1-connec-

tion, on the other hand, is called the "Dawid-connection",

after Dawid [11] who was first to suggest its introduction.

In order to elucidate the relevance and the meaningful-

ness of the a-connections in statistical problems, we con-

sider two examples suggested by Dawid [11] and described in

Amari [1].

Example 1. We consider an exponential family PG of distri-

butions p(.1 8) given (using the summation convention) by

(3.6) p(xIO)=exp{T(x)+T (x)0i(0)} (xcx)

with

(37) (o) W i T(x) dii(x) (OCO), -
x

and specified by the natural free parameters O=

* 2
(0 0 )eO. Here q is a C -funtion on 0, and T and

T1,...,T are measurable functions on X. Under these cir- . --.

cumstances, we have ''

ailogp=Ti(x)-3i (e) , alogp=-a

Therefore

(3.8) g.j=3i3. , 4av

(3.9) E [ a logp) logp)]=0
. k-.

%~

N°
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and

* ci 1-ai
(3.10) 2 ijk: Tijk

ai
Since r (0) is identicalll zero for a=l, we find that the

ijk

exponential family constitutes an uncurved space with re-

spect to the Efron-connection. For this reason, the Efron-

connection may also be called the "exponential-connection".

Example 2. We consdier a family P0 =P (ql,...,qn+l
) of dis-

tributions p(-I0) given by a mixture of n+l prescribed

linearly independent probability distributions on X,

p (xIO) =q i(x) Oi +q n+l (W) n+ 1  (xEx)

where

0 -0+..0)-
n+l; (1+-•+6n

and OcO with

e ={e=(el,...,8n)cR+ : nl>01.
1 n + n+1>}

In this case, we have

a logp=p- 1 (qi-qn+l )  3i3 logp=-(3ilogp) logp).

Therefore

Ea Hd a ogp) logp)]=-T

and

. . . . . .-.-.
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r "--T
ijk 2 ijk" %

It follows, since ri.k(e) is identically zero for a=-l, that

this family of mixture distributions constitutes an uncurved

space with respect to the Dawid-connection. For this rea-

son, the Dawid-connection is also called the "mixture-con- .-

nection".

a I
Once the a-connection rijk is adopted, the other related

ak a t a a
quantities rij, R R . d K are determined by the

same rules, (3.1) and (3.3)-(3.5), for determining the cor-

responding quantities when a=O. For example, -"

ak a mk

and, corresponding to (3.2), the equation

8k+Pij. 8 =0 (ki, ... ,n)-.- "°i i

gives the "strai:;ht-lines" 0=0(t) with respect to the a-con-

nection. When a=O these "straight-lines" are also the in-

formation geodesic curves. This is not necessarily so when -

a+O for, in this case, the a-connection is not compatible

with the metric tensor gij"

The theory of a-connections and their curvatures seems

to be particularly applicable in elucidating the structures

of the exponential families as well as of the curved expo -

nential families of distributions. An exponential family

. . . . . . .-. .
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may be written in the form (3.6)-(3.7) by choosing natural

parameters =0(,...,On ) which are uniquely determined with-

in affine transformations. In this case, (T1,...,T n ) con-

stitutes a sufficient statistic for the family and has a

covariance matrix V which equals to I. In particular, the

corresponding Cramer-Rao lower baund, in property 30(i) of

the previous section, is always attained. Moreover, the

natural parameter space 0 is convex, and, by (3.8), p is

convex on 0. A use of (3.5)-(3.10) shows that the a-

Rieman-Christoffel curvature tensor of the space isgivenby

a 1-a 2Rijk= 2 [j rk imi _ j rzTimk ] g.

Initially, this formula is valid only for the natural co-

ordinate system. However, since the formula is given by

means of a tensorial equation, its validity does not depend

on a particular choice of the coordinates. It follows that

for any exponential family P0

a 2
R (_a )RiRijkk =  )jkV'

and hence the Efron and the Dawid connections (i.e. when a=l

and a=-l) render the space 0 as "fla" (or with an "absolute

parallism").

The curved exponential families can be embedded in the

exponential families as subspaces (Efron [13,14]). Using

this observation, one shows that these families posses vari-
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ous dualistic structures: The Barndorff-Nielsen duality [4]

associated with the Legendre transformation, the a-(-a)

duality [1] between two kinds of connections and the a-(-a)

duality [1] between two kinds of curvatures. As shown by I
Amari [1], these dualities are intimately connected and,

moreover, that the second-order information loss is express-

ed in terms of the curvatures of the statistical model and

the estimator. We refer to Amari [1], Barndorff-Nielsen

[41, Dawid [11], Efron [13,14] and Reeds [28] for a more

detailed account on these statistical connections. For

the general study of connections and curvatures, we refer -4
to the books of Eisenhart [15,16], Hicks 118], Laugwitz [20]

and Schouten [29].

4. Informative Geometry of Specific Families of Distribu-

tions.

An informative geometry of distributions p(.Ie)e P is

the geometry associated with the natural affine connection

2
i k of the information metric ds . We shall briefly de-

scribe the informative geometrics of certain well-known

families of distribution P6. This description includes the

evaluations of the curvature and the Rao distance for the

family P" Note, however, that, as mentioned in the pre-

vious section, the a-curvature based on the a-connection of

2
Amari [1] is (1-a) times the present information curvature,

0.? .i " . -'- " ". : .-.. : .- ": .... : -' . "- -'.'-i- -'.i, .-. •i'''''' :-.-.-i. -'-'--.---- .? --- .'.'..-.-.-.i.ii



20

provided P is an exponential family.

- - 4.1. Univariate Distributions.

2 2Here 0 is an interval and ds (6)g(dO) with

gi=g(O)=g11_=-E,(3 logp) (P( Ie)EP0

* -The curvature is always zero and the connection r is

g'(6). The latter can be made to vanish identically by

reparametrizing OeO to 0*, where Cs'(e)) =g(G). The Rao

distance of a,be0 is given by

b

S (a,b)=If 'g(O) dOI.

For example, for a one-parameter exponential family

p(xjO)=exp{T(x)+t(x) ()-i(0)

we ~ ~ fnthtg6'2  2 2
we~~~ ~ fidta >0 where a=E [(T-w) Iwith wE()

and, moreover

A special case is the (generalized) Weibull distribution

(4.1) p(xIO)=T'(x) (O)exp{-T(x) (O)) (x>0, 660)

with respect to the Lebesgue measure on x=R+. Here T is a

non-negative differentiable function on X with T(O)=0, and..I

is monotonically increasing to ~.We also assume that
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*(O)>O for every OcO. In this case g={(1og0)'} and thus

We now list some other nondiscrete cases:

1?Gamma Distribution. Here

1 r-1 -xO rp(Xle)=j~- e 0

*with respect to the Lebesgue measure on X=R + The parameter

space 0 is IR+ and r>O is the index of the gamma distribution.

In this case

2? Weibull Distribution.

r r
p(xl6)=rxr- Oe

with respect to the Lebesgue measure on X=R .Here O=R+

*and r>O is the index of the Weibull distribution. This is

dra special case of (4.1), and77

S(a,b)=I log(a/b) I (a,beR+)

3? Pareto Distribution.

p(xlO)=Or x(01 (x>r, eeIR+)

with respect to the Lebesgue measure on x=[r,oo), r>O. As

before
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4? Power Function Distribution.

p(xIo)0er x0 (OJ<x<r , 0R+)

*with respect to the Lebesgue measure on X=(O,r], r>O. Again,

S(a,b)=Ilog(a/b) I (a,beR+).

5? Fixed-Mean Normal Distribution.

2 2
2 1 e-(x-r) /26 xR

p(xIO)=N(xlr,o )=ER
1/2

with a fixed mean rER and variances 6 2 0OR:. Then

SA~)F1o~abi (~e

6. Fixed-Variance Normal Distribution.

2 2
(I)N10 2) 1 ---(x-0) /2r ()

(270) r

with a fixed variance r ,r>O and means OeO:R Then

We now list some discrete cases.

7? Poisson Distribution.

*p(XIO)e% x/x! (xcZ+, 0OiR+)

where Z ={0,1,2,...}. Then
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8? Negative Binomial Distribution.

p(Xle)?= r(xtr)O0x (..0) r (xez+, 0<6<1)

with index r>0 and 0=(0,1). The Rao distance is

Alternatively

S(a,b)=2vrr log (a,be0).
,'(1-a) (1-b)

9? Binomial Distribution.

x

with 0=(0,1) and N>l is an integer. In this case

S(a,b)=2/N cos 1/+Vrl-a) (1-b) I

or, equivalently,

S (ab)=2v I si- l/s i- ly' (bc

The distance without the factor 2/N is also called the

"Hellinger-Bhattacharyya distance" (see [3,5,12'j' for the

binomial distribution.



24

4.2. Bivariate Distributions.

Here 0, for p(. 1O)eP0, is of dimension n=2. In this

case, the first ilLformation curvature tensor R has only
ij k9

one independent component R1212 . The latter coincides with

* the Gaussian curvature K. As an example, we describe the

2-dimenisonal geometry of the classical normal distribution

2 2N(ia with means p and variances a (peR, a +) Other

examples are described in 4.3 below.

For the normal distribution

2 2
p(xIO)=N(xIu,a 2 )= 1 -(x-) /2 2  (xesR),(27' 0 "a"-."

2we have E=RxR, and O=( ,2 )e0. The information metric is+

ds2a [(d") +(do )

F1.

and the curvature is K--2 - . Letting V*=p/2 and introduc-

- ing the complex variable z=p*+ia we find that 0 becomes the

* 2
upper-half plane {zcE: Imz>O} and ds 22o dzdz, effectively

the Poincare metric. The geodesic curves are the "semi-

circles"

*. z=a+rei  , r>O ,0<f<,

where a is a real constant. This family includes the half-

lines Rez=const., zeO, as limiting cases, corresponding to --

r-. The Rao distance S(1,2) between (P 2 and (P2,o2)of

... * ' - v .
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22"--

0, equivalently between N(p 1 a ) and N(a 2 2 ), is

1+6(1,2)

S(l,2)=/F log

where

(V1_112) 2+2 (-a 2) 2' 1/2 -

2 2
(Ij1-P2) +2(ai+a2 ) J

Note that always 0<6(1,2)<l. An all2rnative expression for

the distance is

S(1,2)=2/2 tanh 6(1,2).

We note that when pi=l2, the geodesic curve connecting

2 2
(Pi 2  and (pl,a ) lies on the straight line V=const., and

the distance is S(l,2)=/2-jlog(al/a2 )I which is identical to

that in 4.1(50). On the other hand, when al=02 the present

distance does not agree with the distance in 4.1(60), since

a=const. is not a geodesic curve of the present metric (see

also [1,3,7]).

4.3. Multivariate Distributions.

We first describe some discrete cases. To do so we

employ the following multinomial notation: For 0=

n ),(0n, ,n )eR and a=(a1 n +, we let
1i n•~a= .. n q.o

l'"" a

1111 +1 "l n ' V n'

and hence Iaj=al+...+- and I101=+o..+0 if 0 is also in

n n
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If y=(y1,... ,y is another vector inRn then

The vector (,.1)of Inis denoted by 1

At the present, the sample space X is a subset of +n

with a counting measure and the parameter space is of the

form

0 ={en:IOI<p} (O<P<co).
P +

A typical example is as follows: Let F be analytic with the

power expansion-

suhthat b 0freeymZ+ Cnie (p the) probability

(4.3) p (azl) = i 4 ! Fj (aeZjeo)

The metric tensor is then

r wer s1 (0)=06I)[e 6 ij +h(I61)I (OcO)

f(t)=(logF)'(t) ,h(t)=(logf)'(t).

[The first information curvature tensor in 0 is given by
6P



27

R (O=-(4 0 'f(I0I){h(IoI)(6Ska -6 ajk
RijkI i j if.J i zj

+h'(161)60f-.)+-h'(161)0 (6ik6i

while the information curvature is

hi c(O:X~Y)=- ([(8I]3 f(I0I f'(Ie

+H(I0I)[h(I0I)+ A(x,v,y) -%

where

H(t)=f(t)f"(t)-2[f' (t)1

and

A(x,y,z)=<,,,x,x><,y,z>-<x,y><x,z> (x'y'zeRn).

This curvature is constant if and only if it is isotoropic,

i.e. if and only if H(t)-=O for -p<t<p. The latter is equi-

rt -r
valent to either F(t)=ae or F(t)=a(b-t) where a, b and

r are positive constants with p<b<co. This gives, effective-

ly, either the independent Poisson distribution with KEO or

the negative multinomial distribution with K=--(4r) -l(see 10

0and 2 0 below).

To find the geodesic curves for the distribution in

(4.3), we introduce the additional functions,

L~t=-,~t)1ft[f"(t)-2f'(t)h(t)]

and
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i2
M(t)= [3f(t)f'(t)+tf(t)f;(t)+t(f'(t)) 2

f(t)+tf '(t)

The equations for the geodesic curves 0=0(s) are then

k k 2 " l( I)[11"]2=0 (k=l

k  k

2f(I61) 161"+M(le )[lel" ]1

and

2f(jej) ( k 2

k( ) e---k- +f'1 le)[ 11]2=1.
k=1 k

We now list some specific examples.

1. Independent Poisson Distributions.

t

This is a special case of (4.2) with F(t)=et . The metric

tensor is

gij=. 1 iJ

and the curvature is K-0. The space 0 with respect to this

metric is, therefore, essentially euclidean. The Rao dis-

tance for this distribution is

n

k=l

effectively the "HellinSer distance" [7,8,12,23]. This

example, together with 4.1(70), provides also an illust-

ration to property 10 of section 2.
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2? Negative Multinomial Distributions.

p(al9)-- 0 (lr- lair(r) 0a -

with index r>O. This is a special case of (4.2). with F(t)=

(l-t)- r . The metric tensor is

r1
gij= 8 j+ (-I, .

and

R . -r {6 6 -6E~(6
Rijk - 4(1-l) ik j)iojkP .jk)

+6 (6 -6i)]}
j ik it.

with

1

-

It follows that 0 with the above metric is locally iso-

metric to the "Poincare' hyperbloic space". In particular,

for any two points a,beOI there exists a unique geodesic

curve in 01, with respect to the metric, connecting the

points (see, for examlple, Hicks [181).

The geodesic curves 0=6(s) are given by the "hyperbolas" _
1 S+ n )+B k }2 "" '". .,n

0k={Aktanh '  (s+Bl (k=l... n)

where A., B (j=l,...,n) and B are con:tants satisfying 2
where ~n+l

n n i ' '

20 22A Bk 0(Ai+B k ) =1

k=l k=l

. . . . .-.........
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and

0<IAkt anh- +BkJ<1 (k=1,...n).

2
This family includes the lines Ok7B (k=l,... ,n) as limiting

cases. The Rao distance is n

1 - 1 / a k b k___

S(a,b)=2Fr cosh-1 f _ _ I (a,beO1)-
/(l-jaj) (1-b ) -

An alternative expression may be obtained by using the

identity cosh -x=log[x+v -1], x>l. The expressions agree

with those in 4.1(8°) when n=l (see also Oller and Cuadras

[22]).

3? Multinomial Distributions.

P (a e) =  (N-IctI)( + , <N ; 0 1) """--,-'--- --

with an integer N>l and sample space X={ac+. Ial<N}. The

metric tensor is

i=N(O" 16ij+  O) (C0),O...

and

N1R6 66 6. + 1[6 (6. -6. )+6. 6. ]
ijX 40.0. ik j2. iY .k l1-O i j~ jk i ik6 id

with

0i

4Ng

This gives, effectively, the spherical geometry. In fact,

0-
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upon putting 0. =i-101 and introducing the new variables
1/2

y1=6 1  (i=1,...,n+1), we find that the metric becomes

2 t+1
ds 2(y)=4N (dy.)

and 01is mapped onto the positive portion of the (n+1)-

dimensional unit spheren+ 2 2
Y={Y(Yi3'-*JYn+)eR+ :y1 + n+1

=11. It follows from the spherical representation that the

* geodesic curves 0=0(s) are the "great circles"

s s 2
k (s)(Akco +B S in-) (k=l,...,n+l)k ko N k 2NI

with

and with constants (,. ., A n~ 1' loBn+1 satisfying

n12 nl2 n+1

k=1 k=1 k=1

The Rao distance is

n+1
S(a,b)=2F cos( -kb~j~ (a,beO1)

k=l

with

effectively the "Hellinger-Bhattacharyya distance" [5,6]

(see also [3,24]). This agrees with 4.1(90) when n=1l.

The nondiscrete cases that we shall describe here are

.~~~~~. . ... . .
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those associated with the normal distribution

72 -/2 -e1/xP'- -i'P (x-U)} xl)

with mean (column) vector Ui and a variance-covariance matrix

E. We shall use the standard matrix notation: M(n,R) is the

space of all nxn real matrices, S(n,R)={AeM(n,R): eA'l the

subspace of symmetric matrices, GL(n,R) the group of all non-

singular matrices in lf.(n,R), P(n,R) the subset of all posi-

tive-definite symmetric matrices in GL(n,R). The inner pro-

duct and norm on M(n,R) are given by

<A,B>=tr(AB') ,I IAI I=<A,A>}1/12  (A,BcM(n,fR)),

* . and

[A,B]=AB-BA (A,BcMIn,R)) -

stands for the commutator of A and B.

For the normal distribution p(.IO)=N(.Ii,Z), 0 is

R xP(n,R) and 8=(jj,E)eO. The information metric is then

2 1 l 1 - 2
*(4.4) ds =(diz) (djj)+-Itr{(EZ dZ) UU(1,E)E0).

We note that

The geodesic curves are determined by

. . . . . . . . . . . . . . . . . .. . . . . . . . . . . .* .. .
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(4.6) c-+c=O,

C'FC 1tUE 1=1,
2

where c is a constant vector in Un. We also note that for

* any (a,A) in RnxGL(n,R), the mapping (v,E)-(Wpi+a, A EA)

establishes a homeomorphism of 0 onto 0 which is also an

2isometry with respect to the information metric ds2 . Con-

sequently, the Rao distance between (pi,zi and 2,E2 in 0

satisfies

SOV (pi1 :12' E 2 )=S (Aep +a,eZA" 2 +a e2A) --

for any (a,A)cRnxGL(n,R). In particular, the above Rao dis-

tance S(1,2) admits the formI ~~-/ 1/22 1/. &d

7"S (12)=8(0' I : (Pl/ (-Pl Ei E Z-1/

Explicit expressions for the geodesic curves and the Rao
01

distance in this general setting are not available. We

therefore only describe some special cases.

4? Fixed-Variance-Covariance Normal Distributions.

In this case we consider the family of normal distribu-

tions N("IIJ,E o ) with a fixed variance-covariance matrix E0 .

In this case 0 is n and the information metric is

2 -1nd (d)' Z l(dp) (PER ."°

0

.-.'.-. "
Aa& .&in a.At S.A * 4 ... . *. ..-. .- ,.
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which is essentially the euclidean metric on Rn, since .7

E cP(n,R) is constant. The Rao distance is therefore

S (Vli2)={ (ulV) -"~ v_2) }/ E ,2R) (V _11

This is the familiar "Mahalanobis distance" [18] and it

-agrees with the distance in 4.1(60) when n=l. Note, how-

ever, that, as is mentioned also in 4.2, the present dis-

*tance cannot be regarded as the restriction of the Rao

distance for the entire manifold nxP(n,a) to nx{.E 1. This
0

is because the curve (uE ), as (4.6) shows, is not a geo-
0

desic curve of the metric in (4.4).

5. Fixed-Mean Vector Normal Distributions..

Here we consider the family of normal distributions

N( IuE,) with a fixed mean vector po" In this case 0 is

P(n,R) and the information metric is

(4.7) ds2= itr{(E-dE) 2 } (EP(n,R)).

Moreover, the geodesic curves E=E(s) of this metric may be
(-1 "'

determined from (4.6) with c=O. This gives (E E)'=O and

the normalization tr{(E-l.)2 }=2. The solution E(s) must be-

long to P(n,R). Consequently the most general geodesic

curve is of the form

-sB
(4.8) E(s)=A e A

where A and B are constant matrices such that
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(4.9) AeGL(n,R) BeS (n,R) JIBI 2t(B2)=2. ''•

The group of automorphisms G of P(n,R) onto itself is.

generated by Et-.z£"' and E,-+A ZA where AeGL(n,R). This group

is "transitive", i.e. for any E1,E2eP(n,R) there exists an

feG such that f(=Z2 (just choose A= E 2E/2GL(n,R)).

Moreover, for a given E cP(n,R), the automorphism feG given

by f(E)=EiE-i, EcP(n,R), satisfies f=f- and f(El)=E

Consequently, the parameter space 0=P(n,R) is a "symmetric

space". It is also easily verified that the group G coin-

2cides with the group of isometries of the metric ds on

P(n,R). The group G forms a subgroup of the "Siegel

sympletic group" [30] which acts on the "Siegel upper-half

space" S(n,R)+iP(n,1R). This gives an alternative descrip- V'-"

tion for the geodesic curves which is equivalent to that of

(4.8)-(4.9), na.ely that the most general geodesic curve

E=E(s) is of the form

f (E(s))=diag[e ,... ,e ] (feG)

where f is an arbitrary automorphism of P(n,R) andvl,...,-n-
2 2

are arbitrary non-negative numbers with Vl+'. +vn= 2 .

The Rao distance S(1,2) between E and E of P(n,) is'
1 21

easily determined from the above geodesic equations. The

geodesic curve .=.(s) along these two points, with 1(0)=El,

E(s )=E and S oS(1,2), satisfies (4.8)-(4.9) in the inter-
0-2 o

°°• . .• •o ° . °• . . .. .. •... .. . •• °o
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"''-L" ~val 0<s<s with..,:"-

':::s 0B 1:
AJeA=E I  e E =A1/2 A-7"..,

Consequently,

(4.10) s(1,2)= 1 1 llogE-112 2 -_11211 (EVE P(n,P)).

We note that

(4.11) I log z 2 1/2  l2=tr{log2Z-l/2-1/2 log 2 k,]
- "- k=1 ''

where

(4.12 Ak E-1/2 -1/2
(4.12) Xk Zl ) (k=l,...,n)

are the positive eigenvalues of the positive-definite matrix

"- 1/2 lI/2 (note also the symmetry between E1 and E in

(4.11)). Equivalently, A,. .Xn are the singular-values of -

-2l r l of.-
z E or of E , and they are determined uniquely as the

solutions ,=Xk(k=l,...,n) of the determinantal equation

Sk

Other alternative expressions for the Rao distance S(1,2)

- in (4.10) are also available. For this purpose we introduce

the symmetric matrix

T12=(EI-Z2) (+E2)

and define R=R(E1 ,-2) by

S.__ - --
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1=T2  1E~2 12 T12 T12)

Then R is symmetric and semi positive-definite; it is posi-

tive-definite if Z +2and is zero otherwise. Consequently,

the eigenvalues rk=r k(R) of R are related t6 the eigenvalues

Ak in (4.12) by

l~k 2
rk~lA) O<rk<1 (k=l,...,n).

k

In aricla, hemariesI+ 1/2  1/2
In artcuarth maries +R and I-R are members of

P(n,R). Moreover, since

2 __r -1 1/2r 2
log lr =4[tanh r =2 2 4r(_ (0~r<l)

1-r12k 2 1

and

1/2 1/2
we have, noting that I+R and I-R commute,

2 + / 1 1 /2 co Rk 2
2log =4[tanhlRl/ =4R( R 2

1/2 2 1/2

ad 2 1 2T!+R1 2  n 2 l~k

(4.13) S (1,2)= -trflog l/2 2_1 log .r 1/

I-R k

The components of the first curvature tensor at anyI

~EP(n,R) are zero and thus the space P(n,R) is essentially

euclidean. The Rao distance in (4410) or in (4.13) reduces

to tat i 4.00) hen ~l see lso 31)

00

6. Independent Normal Dlitributions.

We consider a family of normal distributions..

* .22
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N(- l1ij,:E 0) with varying mean vectors IeRn and variance-

covariance matrices EeP(n,R) that commute with a fixed vani-

ance-covariance matrix ZeP(n,R), ZE#1. The parameter

space 0 in this case is 0nf where

P(n,R:E )={ZeP(n,R):EE =E El.41

The last set contains the matrices Iland E0  and it contains

all the powers Emm+ 2.. provided EcP(n,R:E ). In
0

addition, if Z1 and E2 are any members of P(n,R,:E0 ) then so
1 2-0

is ZEE. 1

The fixed matrix E 0admits the decomposition

02

E =U A U

where U is an orthogonal matrix, -
0

with positive elements in the diagonal, and A 0is a diagonal

matrix

with positive elements. It follows from the well-known re-

sult on the simultaneous diagonalization of commuting sym-

metric matrices (see, for example, [27, p. 411) that

i'(n,R:E )EP(n,!R:U ) where

P.(n,R:U )={EeP(n,IR) :EU A 2U
0 0 0

0
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with

A~~diag~~al,.~ 'a (a >0 l...n

2
This shows that P(n,R:A o)-P(n,fl:I) is the set of all diago-

nal matrices in P(n,IR) and that it is isomorphic to

P(n,R:E ). In particular, (n,R:E ) is an n-dimensional

submanifold of the full n(n+l)/2.-dlmensional manifold

P (n,f.).

The mapping xI-+U 0 x constitutes an isometry of the sample

V.- space X=O onto itself and preserves the Lebesgue measure

K on Rn Therefore, the given family of distributions

N(.Ilp,EZ is identical withI

I-

[:i. .|

(4.14) MC. Ip,A :U 0)N(1vl 2 . (jvnan

where

(4.15) /=V=U1v(1 ....vn) =101

Adiagll-,., n (>O k=l,..,n) •-.-.

The given distributions are therefore products of n indepen-

dent univariate norvial distributions, and hence, by virtue

of pres 1 Pfnectand the analysiscarpi reduced to

that foud in 4.2. The parameter space 0 is now (RxR )- and

2 2~
su[aniod),.f,(v l a c(nRxR+)2 and the information metric

isI

2 n 2 dvk2
ds =2 1 a[-) (do~ ]k k

-*4 F2



40

Letting Vk=V 2 and introducing the complex variables

Zk=vk+iak (kml,...,n) we find that 0 becomes the poly-upper-

half plane LIn=z=(z, ...,z )eEn:fmzk>0, k=l,...,nl and
n

I akzkdzk (,Un),

k=l

effectively the "Poincard' metric" of Un.

The above metric is "hermitian" (see [19]), i.e. it is of

the form

2

ds zd
'2kj k .

where the summation convention has been used. Here [g k]j]

is an nxn hermitian (i.e. gk;=g ; k,j=l,...,n) matrix,

defined on a complex manifold M of a complex dimension n.

For a local coordinate system zl,...,zn of M with ZkXk+iYk H
(k=l,...,n), we introduce the complex-derivatives

a k= 0k-iD )/2 , k=a +iD )/2 (k=l,...,n)

and the components of the "Ricci curvature" tensor

R -.=-2 a logG,

where G is the determinant of [gkT]. The components of the

* Riemann curvature tensor are now given by

R.- -3kD gi +g 3kgi;BYg3, :
0ijkk k. kim ri

while the mean Gaussian curvature is replaced by the "holo- ".

. . . . . . . . . . . . . . . . . . . . . .. .
.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ..''-.."'-...'.-. .,..'.-.. ..,. . ..-. . ..-'' .- 'J '',-.- ' ,-'" 2-.' - '-. .-. " ".",%." " ." " "_'
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41
a-..-

morphic sectional curvature"1

2R.- -vvvv
K(z:v)= 2j9 (zeM),

-2'
41 - --v.

at zsM in the direction of v=(vl,...,Vn)eCn. Here IgI is-"

the matrix-inverse of [gr-].
rm

For the metric under consideration we have

- g 2& . gko= 1 2 
6

gkj=2Okkj 2k kj

and

n0 -2
G=-2n oh'-a 1 2 "F I -"

Therefore

1 -2
kJ=- igkj=-Ok 6kj

Moreover,

R.7 a
ijk= k ijk-.

where 6. is the tensor whose components are of value 1 if
ij kk.

i=j=k=Z and 0 otherwise. It follows that the information

2 2'holomorphic sectional curvature at z-[(v 1 , 2) ,.*.,( (n, an)]

in the direction of v=(v ... , is
n

1 k=l 
[[-".j]K(z:V)=- n

k %1Vk122..---
k=1 '2"-_
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This curvature is independent of the mean vector vUjand

it vari2s between -1/2 and -1/2n, a result consistent with

4.2.

The geodesic curves are the product of the "semi-circles"

v k=vr2(ak+rkcosc) a k =rksink

where

rk>0 O<Y~<1 k~,..n

and al. .. .an are real constants. This family includes

products containing the half-lines vk=cost. as limiting

2
cases. The Rao distance S(1,2) between (

2 2' 2
=[(V11,a1),...,(vinai) and

2 2'
=[(V 1 a2  ),...,(v nan) with the identification of

of (4.1.4)-(4.15),, is given by

~ o 2  k .

-k=l 1-k(12.

where

(vlk-vk 2+2 1/2
vlkv2k) +2 lk+02k)

6k (V2 2 +2a21(l,.n)

This distance reduces to that in 4.2 when n=l (see also [71A

for additional details).
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5. Hilbert Space Embedding.

The intrinsic geometry of a space of distributions may be

represented by means of an embedding in a Hilbert space. In 7

order to describe chis abstract approach we shall introduce some

further notation.

For a e 1R we let

a = {p C M: I pia dv <ca} (a 0),

40 {p £ 1: (logpl)2 d < c}

and for 0 < r < c we also consider the subsets

La(r) = {p e La: 1
p la dp = ral (a 0)9

x
0  0 : f (log IpI) 2 dii r}.

x
In this notation, L2 is a Hilbert space with the inner

product and norm

(p,q) = pqdv, i1P1l = " PP) (p,q e L 2I

2 ~ x2
and L2(r) is the sphere of radius r in L We also define

(r o1.mP7().: ~ ~~L Lafl +, pa(r) =L(r)flM..,.:

" + -. +

and we write P for Pa(l). Thus, in the notation of Section 1,

L =L
1 and P = P.

For a R and p £ M we define

(5.1) T (p) = 2 T  (a # 0), T0(p) log p (p C M+).

:.. .= .-.. .. : =. . -. . -. .. . .a .. .-f ... . . . .. . +:- . : . : . . . - .. . ... . i-i

",, .. ... ... . .. ... : ..,., - .- .. . .- ... . .. , ., .. . .-, -, .\ < ,.,- .... . ..,. . - ... , - .- .... .. . .. . .. ...-.. ... . .
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Then T is a bijection of M onto M for any a 0 while T is
a + + 0

a
a bijection of M onto M. Moreover, T embeds L+ into L with

+ a +

2 22
a + +'ala

and

(5.3) To(IO+) = L 2  T (P0) = p2 (1).
0 + 0

The induced distance on a is
l+

2 a/2  a/21  ( e L aO)
(5.4) pa (plP2) PI P2 Pll

and

r" (5.5) P0(p 2
) = llog PI - log p211 (plp 2  + 1+0).

Here, the distance p1 (Plp 2)= 211 - I is known as the

"Hellinger distance" on + = L1 . We also note that under some
L+ =+

regularity conditions on el2 L +we have

• plP2) =lira Pa (pl, P2)

* " Let 0 = (1,2, ...) be a set of real continuous parameters

" -"belonging to a parametcy space 0, a manifold embedded in some

n 2
,I<n <-. HereJR =Z ={(a1 ,a2,...)/: ak < c,

k=l
ak eR, k = 1,2,...}. Let Fa= {p( 1e)e L: e be-.b

a parametric family of positive distributions p = p(.I0),6 C 0,

having suitable regularity properties. For example, we assume

that

a = ap(.Io)/3ae (p = p(.J0) e F )
iI

is in M for every 6 e 0 and each i=1,2,..... We also consider

the subfamily Pa = Fa n Pa of Fa.
0 0 0'

... . °-..-.
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on F" we have 2 2.
..- e

p 2 (p(.i0), p(.10 + 60)) ds2(0)"
aa 2

to the second order infinitesimal displacements. Here d is

the a-order information metric

ds 2 () = Pa (dlogp) 2 du c 1R)
a

where the dependence on x e X and 0 e 0 in the integral has

been supressed. This may also be written as
s 2

ds (0) = dO "I (0)dB

where
[0(a)

(e) =[g.. (0)]
a 13

is the a-order information matrix with
gi () = (ilogp)(ajlogp) dp.

x ::
This matrix is always semi positive-definite. It is positive-

definite at 0 c 0 if and only if the functions {6.pl are

2 2
linearly independent over X. Note that ds (6) = ds (6) and

I(e) = 1i(0) are the ordinary information metric and informa-
0l

tion matrix, respectively.

The geometries of La and Pa (a e ]R) under the a-order

metric ds2 may be read off from the embedding T of L into L2

a a +

(5.6) q = T (p) (p L a).
a +

We then have

(5.7) ds2(p) = ds 2 (q) = IjdqjI 2  (q £ L 2).
a 2'-.

2
Here the parameter space 0 may be taken as a subset of L

2
The coordinates of a point q in L may be determined by any

-2 -_ -7 -
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2orthonormal basis (e1,e 2,...-) of Lvia the Fourier-

= coefficients

(5.8) jk (q e) (k = 1,2,...)

2
In this way the point q e L is identified with the point

of t and we have

2 2When 0 is L ,the geometry under ds2 is the usual eucli-

dean geometry. The Riexnann-Christoffel tensor of the first

kind in identically zero and the geodesic curves qils]=

2
* .q(-Is) c L are the "straight lines"

2
q[s] as + b (q[s] c L ,s e IR)

2
where a and b are parameter-independent functions in L .The

geodesic distance is then

S 2(ql1q2 ) = P2 (ql,q 2) =11ql-q 211 (ql,q 2 e L 2)
2

When, on the other hand, 0 is L (r) (0 < r < cothe geometry

2
under ds is the spherical geometry. In this case, the

2

Riemann-Christoffel tensor of the first kind is given by

(5.10) R (x,y: u,v) =(/4)(x,u)(y,v) - (x,v) (y,u)}

where xy,u,v £ L2  The mean Gaussian curvature is then

K(, R 2 (x,y:x,Y) 14 y L2

i2(xy jjxj1 11y112_[(x,y)] 2  1/ x_7 L)

To find the geodesic curves q= qts] (0'<s<L) of this

spherical geometry, we determine the solutions of the first

variation equation7
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tS ll[slllds =0.

0
subject to the constraint

(5.12) IIq[s]lj= r (0< s<L)

Here s is the arc-length parameter and thus we also have the

normalization

(5.13) 114Is] II= 1 (0 <s <L).

For this purpose, we consider the Lagrangian

G(q,4) = 114[s]iI + X(s) [ Iqrs]ll- r I2

with the Lagrange multiplier X(s). Using an orthonormal basis

2(ele2,... ) of L , the Lagrangian may be represented with the

aid of (5.8)-(5.9) as

(5.14) G(q,4) = J I + _() r
.2 r22
4)2 k 'k=l k=1 

'" -

where 22 . is the coordinatization of q e 2 .

Thus we seek the extremum of

G(q,4) ds

* 0

subject to the constraint (5.12) and the normalization (5.13)

which, in view of (5.8)-(5.9), may be written as
. 2 

".2 
2"2

(5.15) ; =r, 4.
k=l. k=l

This extremum is determined by the Euler-Lagrange equations

BG _d 3G o0 (k= 1,2,...),""..
*k ds a k

where G = G(q,4)is given by (5.14), and the conditions in (5.15).

--'-7... -!

-° -.
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I" We obtain

(5.16) 2X(s) k-% = 0 (k = 1,2,...)

_ However, by the first equation of (5.15)

Mk0,I -. k=l "

and so O

C .=-i k=l
or, by the second equation of (5.15),

k=10 2

It follows from (5.16) and (5.15) that 2X(s)r = -1 and that

k+ - k 0 (k=1,2,...).

2 2
This shows that the geodesic curves q = q[s] of ds2 on L (r)

are the "great circles"

(5.17) = a cos + b sin s (0 < s < L),
r r

where a and b are parameter-independent orthogonal functions

2
in L (r), i.e.

(5.18) hall =lbi = r, (a,b) 0.

, In order to find the geodesic distance S2 (ql,q2 ), with re-

2 2
spect to ds , between ql and q2 of L (r), we use (5.17)-(5.18)

with q[O] = ql, q[L] = 2 and L = S2 (ql,q 2 ). This gives the

- spherical distance

(5.19) S2 (ql,q 2 ) r cos {- (q-,-q 2 ))(qq 2 L (r)).2 2) (l q2 } ( , 2 L r )......i

The arc on the great circle in (5.17)-(5.18) connecting the two

* points ql,q 2 c 2 r) admits the alternative representation

(5.20) {q[s]} 2  A cos2 (B -() (0 < s < L)
r

,..-. * . 4 .- *. -. _ ....*w..-
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where

2 2 L 2L
(5.21) A {q2 + q2 2qlq2 cos r 
(5.22) B = tanCos

q- r r

and L = S2(ql,q2).

We now describe the geometries of La and Pa (a e IR) under .l

2
the metric ds This is done, as mentioned previously, by

a
2 2 2

considering the geometries of L and L (r) under ds2 and using
the embedding T in (5.1) with (5.2)-(5.3) and (5.6)-(5.7).

Here r ra with ra 2/ la for a j 0 and r0  1.
a a a

The previous analysis shows that the geometry of La under

2
ds is essentially euclidean. Thus the Riemann-Christoffel
a

tensor of the first kind is identically zero and the geodesic

curves in L have the following description: For a= 0, we have
+s

p[s] = bas  (s e ]R)

0
where a and b are parameter-independent functions in L . For

a 0, on the other hand, we have

2/
p[s] = (as + b) (0 < s<-)

2
where a and b are parameter-independent functions in L+. The

geodesic distance is then

Sa(pl,P 2 ) =  (pP1 2 C L+5,

where p is the distance given in (5.4)-(5.5).

The geometry of pa under ds2 , on the other hand, is in-
a

duced by the spherical representation of L 2(r ). Thus thea

Riemann-Christoffel tensor of the first kind is

~~....... ,o . . ...-. °.... ................ .. •........
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R (x,y: u,v) = R2 (x,y: u,v) (x,y,u,v e L

where R2 (x,y: u,v) is given by (5.10). It follows from (5.11)

that the mean Gaussian curvature of ds2 in P" is

2
Ka (x,y) = 1/4 (x,ye L .

Note that the above quantities for a = 1 give the first in-

formation curvature tensor and the information curvature, re-

spectively.

The geodesic curves and distance on Pa with respect to

2
ds are determined via (5.17)-(5.22) with r = r . For a = 0,

a a
0

we have r0  1, and the geodesic curves p = p[s] C P are

given by

p(s) = exp{a cos s + b sin s} (0 < s < L)

where a and b are parameter-independent orthonormal functions

in L (1). i.e.

fail = lbl 1, (a,b) = 0.

0
Similarly, the geodesic distance on P is then

S0 p1,2 , =Cos (log lop)

or
C-l f 0

S0 (p1, 2  =os J(log p1)(o p)dp 1, ~P)

.5. x

.Moreover, corresponding to (5.20)-(5.22) we also have the al-
p0

ternative representation for the geodesic curve p = p[s] e P0

0
connecting the points P1 and P2 of P , namely

p[s] = exp{A 1 cos (B-s)1 (0 < s < L)

where

°, "o

0o°
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2 2 2(lo 2 (log pl ) (logp 2 ) cos L) / sin L,
B = tan log P2) cos L)/sin

and L = S0(plp 2).

For a # 0, on the other hand, r = 2/Ia! and the geodesic

curves p = p[s] e Pa are given by
p[s] = {a cos 2 s + b sin 2 (0<s<L),

"2 2 -

where a and b are parameter-independent orthonormal functions

2
in P ,i.e.

, all = 1ibl = 1, (a,b) 0 (a,b c M+).

It is also assumed that

a cos s + b sinL s C M+ (0<s<L).2 2 + --

In a similar fashion the geodesic distance on P, is

S(p 1 ,P 2) =T7 cos- (p/2p/2)

or

S(a (pP 2)  2 Cosl f (plP)/ 2 d d p (Pl'p2 P).

x
"' Moreover, in correspondance with (5.20)-(5.22) the geodesic

curve p = p[s] c P connecting the p1 and P2 of Pa admits the

alternative representation

p[s]= Ala cos2 (B 'a ' s) (0 < s < L)2 -

where
A={Pl+p 2

- ,l2 ) /2 2
-2 Co -a'...n l

-1 P2 a/2 .LLL] / sinL L }
B=tan -{[ 'a - coS 2 L

and L = S (
a ( .. L'P

- 2-5. .. -"',
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When a~ 1, we find that the Rao distance on P =P is

S(p1,p2) S S1(p 1 P2) 2 Cos-' f (Pip)! di

x
which is effictively the Hellinger-Bhattacharyya distance,

-described in 4.3(3*). This distance was obtained previously

in Rao [24] by using rather concrete and explicit methods, and

later in Dawid [12] by using abstract methods.
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